; eccenca

mastering complexity

Corporate Memory Control (cmemc)
v22.1

Manual

Corporate Memory Control (cmemc) / Manual

Contents

1.1
1.2

2.1
2.2

4.1

4.2

4.3

4.4

4.5

Introduction

About eccenca Corporate Memory Control (cmemc)
Scope ofdelivery

Installation

Installationviapip
Installation viarelease package
221 Linux/MacOSinstallation.
222 Windows installation

Configuration

Reference

Command group: admin
41.1 Command: adminshowcase
412 Command: adminbootstrap
41.3 Command: adminstatus
41.4 Command: admintoken
Command group: adminmetrics
421 Command: adminmetricsget
422 Command: admin metricsinspect
423 Command: adminmetricslist
Command group: admin workspace
4.3.17 Command: admin workspace export
4.3.2 Command: admin workspace import
4.3.3 Command: adminworkspacereload
Command group: admin workspace python
441 Command: admin workspace pythoninstall
4.42 Command: admin workspace pythonuninstall
443 Command: admin workspace pythonlist
444 Command: admin workspace python list-plugins
Command group: adminstore
4517 Command: adminstoreshowcase
452 Command: adminstorebootstrap
453 Command: adminstoreexport
454 Command: adminstoreimport

Corporate Memory Control (cmemc) / Manual

46 Commandgroup:config 22
461 Command: configlist 24
462 Command:configedit 24
463 Command:configget 25
46.4 Command:configeval 25

47 Command group: dataset 26
4771 Command: datasetlist. 26
472 Command: datasetdelete 27
473 Command: datasetdownload 27
474 Command: datasetupload 28
475 Command: datasetinspect 28
476 Command: datasetcreate. 29
4.7.7 Command: datasetopen 30

4.8 Command group: datasetresource 30
481 Command: datasetresourcelist 30
482 Command: datasetresourcedelete L. 31
4.8.3 Command: datasetresourceinspect 31
484 Command: datasetresourceusage 32

49 Command group: graph 32
491 Command: graphcount 32
492 Command: graphtree 33
493 Command: graphlist. 33
494 Command: graphexport. 34
495 Command: graphdelete 35
496 Command: graphimport 35
497 Command: graphopen 36

410 Command group: project 36
410.1 Command: projeCtopen 36
410.2 Command: projectlist 37
410.3 Command: projectexport 37
410.4 Command: projectimport 38
410.5 Command: projectdelete 39
410.6 Command: projectcreate 39

4171 Command group: QUETY 39
411.1 Command: queryexecute 40
411.2 Command: query list 41
411.3 Command: qUEry OPEeN 42
411.4 Command: querystatus 42
411.5 Command: queryreplay 43

412 Command group: vocabulary 44
4121 Command: vocabularyopen 44
4122 Command: vocabulary list. 45
412.3 Command: vocabularyinstall 45

4124 Command: vocabulary uninstall 45

Corporate Memory Control (cmemc) / Manual

412.5 Command: vocabulary import 46
413 Command group: vocabulary cache 46
413.1 Command: vocabulary cacheupdate 47
413.2 Command: vocabulary cachelist 47
414 Command group: workflow 47
4141 Command: workflow execute 48
4142 Command: workflow io 48
4143 Command: workflow list. 49
4144 Command: workflow status 50
4145 Command: workflow open 50
415 Command group: workflow scheduler 51
415.1 Command: workflow scheduleropen 51
415.2 Command: workflow schedulerlist 51
415.3 Command: workflow schedulerinspect 52
415.4 Command: workflow scheduler disable 52

4155 Command: workflow schedulerenable 52

Corporate Memory Control (cmemc) / Manual

1 Introduction

This manual describes, how to install, setup and use eccenca Corporate Memory Control (cmemc), the
command line client for eccenca Corporate Memory. cmemc is intended for system administrators
and Linked Data Expert, who wants to automate and remote control activities on Corporate Memory.

To use this manual, cnemc users should have basic knowledge on command line interfaces, terminal
usage and config file creation and editing.

This system manual includes the following parts:

« Installation
- Configuration

This document covers installation and basic usage pattern of cmemc and is not intended to be com-
plete in terms of being a reference for all available options and commands. However, cnemc provides
detailed documentation for users via the --help option.

The main documentation resource for cnemc is https://eccenca.com/go/cmemc.

1.1 About eccenca Corporate Memory Control (cmemc)

cmemc is the eccenca Corporate Memory Command Line Interface (CLI). It is developed in python and
build and delivered as an open source python package.

Main features of cnemc include:

« List, edit and check configurations.

- List, create, delete, inspect datasets as well as dataset resources.
« List, import, export, delete or open graphs.

« List, import, export, create or delete Build projects.

- List, execute, replay or open local and remote SPARQL queries.

« List, install, uninstall, import and open vocabularies.

« List, execute, open or inspect workflows and workflow schedulers.
+ Import or export whole Build workspaces and graph stores.

+ List, get or inspect server metrics.

https://eccenca.com/go/cmemc

Corporate Memory Control (cmemc) / Manual

1.2 Scope of delivery

The cmemc release package consists of the following files:

cmem_cmemc-vXX.YY.tar.gz -the source package of cnemc

cmem_cmempy-vXX.YY.tar.gz - the source package of crnempy (the used python API to access
Corporate Memory)

cmemc_vXX.YY Manual.pdf -the cmemc documentation manual (this document)

cmemc_vXX.YY_Manual.ttl -the cmemc documentation as structured data (RDF graph)

requirements.txt -additional requirements needed by cmemc

Corporate Memory Control (cmemc) / Manual

2 Installation

cmemc can be installed using the python sources, using the release package or using the docker image.

2.1 Installation via pip

cmemc is available as an official pypi package’, so installation can be done with pip or pipx?:

| $ pip install cmem-cmemc

| $ pipx install cmem-cmemc

2.2 Installation via release package
2.2.1 Linux / MacOS installation

The cmemc distribution in the release package consists of source package which can be installed with
pip as well.

The following script demonstrates how to install cmemc from these files:

$ pip install -r requirements.txt
$ pip install cmem cmempy-v22.1.tar.gz

$ pip install cmem cmemc-v22.1l.tar.gz

Finally, test your installation.

$ cmemc --version

cmemc, version 22.1

Thttps://pypi.org/project/cmem-cmemc/
Zhttps://pypa.github.io/pipx/

https://pypi.org/project/cmem-cmemc/
https://pypa.github.io/pipx/
https://pypi.org/project/cmem-cmemc/
https://pypa.github.io/pipx/

Corporate Memory Control (cmemc) / Manual

In case you are using bash or zsh as your shell, you should enable tab completion for cmemc. This is
documented on the click framework homepage®.

In order to enable tab completion with bash run the following command in your shell:

eval "$(CMEMC COMPLETE=source cmemc)"

In order to enable tab completion with zsh run the following command in your shell:

eval "$(CMEMC_COMPLETE=source_zsh cmemc)"

You may want to add the corresponding line to your .bashrc or .zshrc inorderto enable completion
per default.

2.2.2 Windows installation

The installation for Windows is similar once you have installed python from the store.

3https://click.palletsprojects.com/en/7 x/bashcomplete/#activation

https://click.palletsprojects.com/en/7.x/bashcomplete/#activation
https://click.palletsprojects.com/en/7.x/bashcomplete/#activation

Corporate Memory Control (cmemc) / Manual

3 Configuration

cmemc needs to know where your Corporate Memory is deployed. For this, you need to provide some
key variables in a configuration file. Per default, cmemc looks for this configuration file on a reasonable
place depending on your operating system.

For Linux, this is $HOME/.config/cmemc/config.ini .
For Windows, this is %APPDATA%\cmemc\config.ini
Note: USER is your actual user name.

Once you start cmemc the first time, it will create an empty config file at this location and will output a
general introduction. In order to do so, open the terminal application of your choice.

Note: All further examples given here are based on Linux commands. For Windows, the output is the
same, however, you need to start cmemc as cmemc.exe .

$ cmemc
Empty config created: /home/user/.config/cmemc/config.ini
Usage: cmemc [OPTIONS] COMMAND [ARGS]...

eccenca Corporate Memory Control (cmemc).

cmemc is the eccenca Corporate Memory Command Line Interface (CLI).
Available commands are grouped by affecting resource type (such as graph,
project and query). Each command and group has a separate --help screen
for detailed documentation. In order to see possible commands in a group,
simply execute the group command without further parameter (e.g. cmemc
project).

If your terminal supports colors, these coloring rules are applied: Groups
are colored in white; Commands which change data are colored in red; all
other commands as well as options are colored in green.

Please also have a look at the cmemc online documentation:

https://eccenca.com/go/cmemc

Corporate Memory Control (cmemc) / Manual

cmemc is © 2022 eccenca GmbH, licensed under the Apache License 2.0.
Options:
-c, --connection TEXT Use a specific connection from the config file.
--config-file FILE Use this config file instead of the default one.
[default: /Users/seebi/Library/Application
Support/cmemc/config.ini]
-q, --quiet Suppress any non-error info messages.
-d, --debug Output debug messages and stack traces after errors.
--version Show the version and exit.
-h, --help Show this message and exit.
Commands:
admin Import bootstrap data, backup/restore workspace or get status.
config List and edit configs as well as get config values.
dataset List, create, delete, inspect, up-/download or open datasets.
graph List, import, export, delete, count, tree or open graphs.
project List, import, export, create, delete or open projects.
query List, execute, get status or open SPARQL queries.
vocabulary List, (un-)install, import or open vocabs / manage cache.
workflow List, execute, status or open (io) workflows.

You should edit now edit your config file and add credentials and URL parameter of your Corporate
Memory deployment. You either search for the config file manually in your home directory, or you can
use the config edit command, which opens the config file in your default text editor.

$ cmemc config edit

Open editor for config file /home/user/.config/cmemc/config.ini

The rules for the config file are similar to a Windows INI file and are explained in detail at docs.python.org’.
Here is a basic example:

[my-Tlocal]

CMEM _BASE URI=http://localhost/

OAUTH_GRANT TYPE=client credentials

OAUTH_CLIENT ID=cmem-service-account

OAUTH_CLIENT SECRET=c9c12831-000c-464b-9b1d-2d8b7e20df6a

This basically creates a named section my-local which is a connection to a Corporate Memory de-
ployment on http://localhost . The authorization will be done with a system account cmem-service-

Thttps://docs.python.org/3/library/configparser.html

https://docs.python.org/3/library/configparser.html
https://docs.python.org/3/library/configparser.html

Corporate Memory Control (cmemc) / Manual

account and the given client secret. Using this combination of config parameter is based on a typical
installation where all components are available under the some hostname.

However, if you need to fine tune all locations, the following config file parameter can be used in addition

to this example:

+ DI _API ENDPOINT - Data Integration APl endpoint, default: CMEM BASE URI/dataintegration
+ DP_API ENDPOINT - Data Platform API endpoint, default: CMEM BASE URI/dataplatform
* OAUTH_TOKEN URI -OAuth?2.0 Tokenendpoint, default: CMEM BASE URI/auth/realms/cmem/protocol/openid-

connect/token

* OAUTH_GRANT TYPE - OAuth 2.0 grant type, default: client credentials
* OAUTH USER - Username to retrieve the token, default: admin , only if OAUTH GRANT TYPE iS pass-

word

* OAUTH_PASSWORD - Password to retrieve the token, default:

password

admin , only if OAUTH GRANT TYPE is

* OAUTH_CLIENT ID - OAuth 2.0 clientid, default: cmem-service-account

+ OAUTH_CLIENT SECRET - OAuth 2.0 client secret, default:

client credentials

secret , only if OAUTH GRANT TYPE is

+ SSL VERIFY - Use SSL verification for requests to DP/DI default: True
* OAUTH AUTH TOKEN - a pre-fetched auth token, only if 0AUTH GRANT TYPE is prefetched token

In order to verify your configuration, you should try to get a list of graphs via cnemc:

$ cmemc -c my-local graph list

Graph IRI Type
urn:elds-backend-access-conditions-graph void
https://ns.eccenca.com/data/config/ void
https://ns.eccenca.com/data/queries/ void
https://vocab.eccenca.com/shacl/ void
https://ns.eccenca.com/example/data/vocabs/ void

:Dataset
:Dataset
:Dataset
:Dataset

:Dataset

CMEM Access Conditions
CMEM Configuration
CMEM Query Catalog
CMEM Shapes Catalog
CMEM Vocabulary Catalog

If you get a similar list of graphs, you successfully configured crnemc to access your deployment.

Corporate Memory Control (cmemc) / Manual

4 Reference

This section lists the help texts of all commands as a reference and to search for it.

4.1 Command group: admin

Usage: cmemc [OPTIONS] COMMAND [ARGS]...
Import bootstrap data, backup/restore workspace or get status.

This command group consists of commands for setting up and configuring

eccenca Corporate Memory.

Options:

-h, --help Show this message and exit.

Commands :
bootstrap Update/Import bootstrap data.
metrics List and get metrics.

showcase Create showcase data.

status Output health and version information.
store Import, export and bootstrap the knowledge graph store.
token Fetch and output an access token.

workspace Import, export and reload the project workspace.

4.1.1 Command: admin showcase

Usage: cmemc [OPTIONS]

Create showcase data.

This command creates a showcase scenario of multiple graphs including

integration graphs, shapes, statement annotations etc.

Note: There is currently no deletion mechanism for the showcase data, so
you need to remove the showcase graphs manually (or just remove all

graphs).

Corporate Memory Control (cmemc) / Manual

Options:
--scale INTEGER The scale factor provides a way to set the target size of
the scenario. A value of 10 results in around 40k triples,

a value of 50 in around 350k triples. [default: 10]

--create Delete old showcase data if present and create new showcase

databased on the given scale factor.

--delete Delete existing showcase data if present.

-h, --help Show this message and exit.

4.1.2 Command: admin bootstrap

Usage: cmemc [OPTIONS]
Update/Import bootstrap data.

This command imports the bootstrap data needed for managing shapes, access

conditions, the query catalog and the vocabulary catalog.

Note: There is currently no deletion mechanism for the bootstrap data, so

you need to remove the graphs manually (or just remove all graphs).

Options:
--import Delete existing bootstrap data if present and import bootstrap
data which was delivered
-h, --help Show this message and exit.

4.1.3 Command: admin status

Usage: cmemc [OPTIONS]

Output health and version information.

This command outputs version and health information of the selected
deployment. If the version information can not be retrieved, UNKNOWN is
shown if the endpoint is not available or ERROR is shown, if the endpoints

returns an error.

In addition to that, this command warns you if the target version of your

Corporate Memory Control (cmemc) / Manual

cmemc client is newer than the version of your backend and if the

ShapeCatalog has a different version then your DataPlatform component.

To get status information of all configured deployments use this command

in combination with parallel:

cmemc config list | parallel --ctag cmemc -c {} admin status

Options:

-h, --help Show this message and exit.

4.1.4 Command: admin token

Usage: cmemc [OPTIONS]

Fetch and output an access token.

This command can be used to check for correct authentication as well as to

use the token with wget / curl or similar standard tools:

Example Usage: curl -H "Authorization: Bearer $(cmemc -c my admin token)"

$(cmemc -c my config get DP_API ENDPOINT)/api/custom/slug

Please be aware that this command can reveal secrets, which you do not

want to have in log files or on the screen.

Options:
--raw Outputs raw JSON. Note that this option will always try to fetch
a new JSON token response. In case you are working with
OAUTH GRANT TYPE=prefetched token, this may lead to an error.
- -decode Decode the access token and outputs the raw JSON. Note that the
access token is only decoded and esp. not validated.
-h, --help Show this message and exit.

4.2 Command group: admin metrics

Usage: cmemc [OPTIONS] COMMAND [ARGS]...

List and get metrics.

Corporate Memory Control (cmemc) / Manual

This command group consists of commands for reading and listing internal
monitoring metrics of eccenca Corporate Memory. A deployment consists of
multiple jobs (e.g. DP, DI), which provide multiple metric families on an

endpoint.

Each metric family can consist of different samples identified by labels
with a name and a value (dimensions). A metric has a specific type

(counter, gauge, summary and histogram) and additional metadata.

Please have a look at https://prometheus.io/docs/concepts/data model/ for

further details.

Options:

-h, --help Show this message and exit.
Commands:

get Get sample data of a metric.

inspect Inspect a metric.

list List metrics for a specific job.

4.2.1 Command: admin metrics get

Usage: cmemc [OPTIONS] METRIC ID
Get sample data of a metric.

A metric of a specific job is identified by a metric ID. Possible metric
IDs of a job can be retrieved with the "metrics list® command. A metric
can contain multiple samples. These samples are distinguished by labels

(name and value).

Options:
--job [DP] The job from which the metrics data is fetched.
[default: DP]
--filter <TEXT TEXT>... A set of label name/value pairs in order to filter

the samples of the requested metric family. Each
metric has a different set of labels with different
values. In order to get a list of possible label
names and values, use the command without this
option. The label names are then shown as column
headers and label values as cell values of this

column.

Corporate Memory Control (cmemc) / Manual

--enforce-table A single sample value will be returned as plain
text instead of the normal table. This allows for
more easy integration with scripts. This flag

enforces the use of tabular output, even for single

row tables.
--raw Outputs raw prometheus sample classes.
-h, --help Show this message and exit.

4.2.2 Command: admin metrics inspect

Usage: cmemc [OPTIONS] METRIC ID
Inspect a metric.

This command outputs the data of a metric. The first table includes basic

meta data about the metric. The second table includes sample labels and

values.
Options:
--job [DP] The job from which the metrics data is fetched. [default: DP]
--raw Outputs raw JSON of the table data.
-h, --help Show this message and exit.

4.2.3 Command: admin metrics list

Usage: cmemc [OPTIONS]

List metrics for a specific job.

For each metric, the output table shows the metric ID, the type of the
metric, a count of how many labels (label names) are describing the
samples (L) and a count of how many samples are currently available for a

metric (S).

Options:
--job [DP] The job from which the metrics data is fetched. [default: DP]
--id-only Lists metric identifier only. This is useful for piping the IDs

into other commands.

--raw Outputs (sorted) JSON dict, parsed from the metrics API output.

Corporate Memory Control (cmemc) / Manual

-h, --help Show this message and exit.

4.3 Command group: admin workspace

Usage: cmemc [OPTIONS] COMMAND [ARGS]...

Import, export and reload the project workspace.

Options:

-h, --help Show this message and exit.

Commands:
export Export the complete workspace (all projects) to a ZIP file.
import Import the workspace from a file.

python List, install, or uninstall python packages.

reload Reload the workspace from the backend.

4.3.1 Command: admin workspace export

Usage: cmemc [OPTIONS] [FILE]
Export the complete workspace (all projects) to a ZIP file.
Depending on the requested type, this ZIP contains either a turtle file
for each project (type rdfTurtle) or a substructure of resource files and

XML descriptions (type xmlZip).

The file name is optional and will be generated with by the template if

absent.
Options:
-0, --overwrite Overwrite existing files. This is a dangerous
option, so use it with care.
--type TEXT Type of the exported workspace file.
[default: xmlZip]
-t, --filename-template TEXT Template for the export file name. Possible

placeholders are (Jinja2): {{connection}}
(from the --connection option) and {{date}}

(the current date as YYYY-MM-DD). The file

suffix will be appended. Needed directories

Corporate Memory Control (cmemc) / Manual

will be created. [default:
{{date}}-{{connection}}.workspacel

-h, --help Show this message and exit.

4.3.2 Command: admin workspace import
Usage: cmemc [OPTIONS] FILE

Import the workspace from a file.
Options:

--type TEXT Type of the exported workspace file. [default: xmlZip]

-h, --help Show this message and exit.

4.3.3 Command: admin workspace reload

Usage: cmemc [OPTIONS]
Reload the workspace from the backend.

Options:

-h, --help Show this message and exit.

4.4 Command group: admin workspace python

Usage: cmemc [OPTIONS] COMMAND [ARGS]...
List, install, or uninstall python packages.
Python packages are used to extend the Datalntegration workspace with
python plugins. To get a list of installed packages, execute the list

command.

Warning: Installing packages from unknown sources is not recommended.

Plugins are not verified for malicious code.

Options:

-h, --help Show this message and exit.

Commands:

Corporate Memory Control (cmemc) / Manual

install Install a python package to the workspace.
list List installed python packages.
list-plugins List installed workspace plugins.

uninstall Uninstall a python package from the workspace.

4.4.1 Command: admin workspace python install
Usage: cmemc [OPTIONS] PACKAGE
Install a python package to the workspace.

This command is basically a 'pip install' in the remote python

environment.

You can install a package by uploading a source distribution .tar.gz file,
or by uploading a build distribution .whl file, or by specifying a package
name, more precisely, a pip requirement specifier with a package name

available on pypi.org (e.g. 'requests==2.27.1').

Options:

-h, --help Show this message and exit.

4.4.2 Command: admin workspace python uninstall

Usage: cmemc [OPTIONS] PACKAGE NAME
Uninstall a python package from the workspace.

This command is basically a 'pip uninstall' in the remote python

environment.

Options:

-h, --help Show this message and exit.

4.4.3 Command: admin workspace python list

Usage: cmemc [OPTIONS]

List installed python packages.

This command is basically a 'pip list' in the remote python environment.

Corporate Memory Control (cmemc) / Manual

It outputs a table of python package identifiers with version information.

Options:
--raw OQutputs raw JSON.
--id-only Lists only package identifier. This is useful for piping the IDs

into other commands.

-h, --help Show this message and exit.

4.4.4 Command: admin workspace python list-plugins

Usage: cmemc [OPTIONS]
List installed workspace plugins.

This commands lists all discovered plugins. Note that the plugin discovery

is limited to specific packages.

Options:
--raw Outputs raw JSON.
--id-only Lists only plugin identifier.

-h, --help Show this message and exit.

4.5 Command group: admin store

Usage: cmemc [OPTIONS] COMMAND [ARGS]...
Import, export and bootstrap the knowledge graph store.

This command group consist of commands to administrate the knowledge graph

store as a whole.

Options:

-h, --help Show this message and exit.

Commands:
bootstrap Update/Import bootstrap data.
export Backup all knowledge graphs to a ZIP archive.

import Restore graphs from a ZIP archive.

showcase Create showcase data.

Corporate Memory Control (cmemc) / Manual

4.5.1 Command: admin store showcase

Usage: cmemc [OPTIONS]

Create showcase data.

This command creates a showcase scenario of multiple graphs including

integration graphs, shapes, statement annotations etc.

Note: There is currently no deletion mechanism for the showcase data, so
you need to remove the showcase graphs manually (or just remove all

graphs).

Options:
--scale INTEGER The scale factor provides a way to set the target size of
the scenario. A value of 10 results in around 40k triples,
a value of 50 in around 350k triples. [default: 10]

--create Delete old showcase data if present and create new showcase

databased on the given scale factor.

--delete Delete existing showcase data if present.

-h, --help Show this message and exit.

4.5.2 Command: admin store bootstrap

Usage: cmemc [OPTIONS]
Update/Import bootstrap data.

This command imports the bootstrap data needed for managing shapes, access

conditions, the query catalog and the vocabulary catalog.

Note: There is currently no deletion mechanism for the bootstrap data, so

you need to remove the graphs manually (or just remove all graphs).
Options:
--import Delete existing bootstrap data if present and import bootstrap

data which was delivered

-h, --help Show this message and exit.

Corporate Memory Control (cmemc) / Manual

4.5.3 Command: admin store export
Usage: cmemc [OPTIONS] BACKUP FILE
Backup all knowledge graphs to a ZIP archive.

The backup file is a ZIP archive containing all knowledge graphs as Turtle

files + configuration file for each graph.

This command will create lots of load on the server. It can take a long

time to complete.

Options:
--overwrite Overwrite existing files. This is a dangerous option, so use it

with care.

-h, --help Show this message and exit.

4.5.4 Command: admin store import

Usage: cmemc [OPTIONS] BACKUP FILE
Restore graphs from a ZIP archive.

The backup file is a ZIP archive containing all knowledge graphs as Turtle

files + configuration file for each graph.

The command will load a single backup ZIP archive into the triple store,
by replacing all graphs with the content of the Turtle files in the

archive and deleting all graphs which are not in the archive.

This command will create lots of load on the server. It can take a long
time to complete. The backup file will be transferred to the server, then
unzipped and imported graph by graph. After the initial transfer, the
network connection is not used anymore, so it will be closed by proxies

sometimes. This does not mean that the import failed.

Options:

-h, --help Show this message and exit.

4.6 Command group: config

Corporate Memory Control (cmemc) / Manual

Usage: cmemc [OPTIONS] COMMAND [ARGS]...

List and edit configs as well as get config values.

Configurations are identified by the section identifier in the config
file. Each configuration represent a Corporate Memory deployment with its

specific access method as well as credentials.

A minimal configuration which uses client credentials has the following

entries:

[example.org]

CMEM BASE URI=https://cmem.example.org/
OAUTH_GRANT_TYPE=client credentials
OAUTH_CLIENT ID=cmem-service-account
OAUTH_CLIENT SECRET=my-secret-account-pass

Note that OAUTH GRANT TYPE can be either client credentials, password or
prefetched token.

In addition to that, the following config parameters can be used as well:

SSL_VERIFY=False - for ignoring certificate issues (not recommended)
DP_API ENDPOINT=URL - to point to a non-standard DataPlatform location

DI API ENDPOINT=URL - to point to a non-standard DataIntegration location
OAUTH_TOKEN URI=URL - to point to an external IdentityProvider location
OAUTH_USER=username - only if OAUTH GRANT TYPE=password
OAUTH_PASSWORD=password - only if OAUTH_GRANT TYPE=password

OAUTH_ACCESS TOKEN=token - only if OAUTH GRANT TYPE=prefetched token

In order to get credential information from an external process, you can
use the parameter OAUTH PASSWORD PROCESS, OAUTH CLIENT SECRET PROCESS and
OAUTH_ACCESS TOKEN PROCESS to setup an external executable.

OAUTH CLIENT SECRET PROCESS=/path/to/getpass.sh
OAUTH_PASSWORD PROCESS=["getpass.sh", "parameterl", "parameter2"]

The credential executable can use the cmemc environment for fetching the
credential (e.g. CMEM BASE URI and OAUTH USER). If the credential
executable is not given with a full path, cmemc will look into your
environment PATH for something which can be executed. The configured
process needs to return the credential on the first line of stdout. In

addition to that, the process needs to exit with exit code 0 (without

Corporate Memory Control (cmemc) / Manual

failure). There are examples available in the online manual.

Options:

-h, --help Show this message and exit.

Commands :
edit Edit the user-scope configuration file.
eval Export all configuration values of a configuration for evaluation.

get Get the value of a known cmemc configuration key.

list List configured connections.

4.6.1 Command: config list

Usage: cmemc [OPTIONS]
List configured connections.

This command lists all configured connections from the currently used

config file.

The connection identifier can be used with the --connection option in

order to use a specific Corporate Memory instance.

In order to apply commands on more than one instance, you need to use

typical unix gear such as xargs or parallel:
cmemc config list | xargs -I % sh -c 'cmemc -c % admin status'
cmemc config list | parallel --jobs 5 cmemc -c {} admin status

Options:

-h, --help Show this message and exit.

4.6.2 Command: config edit

Usage: cmemc [OPTIONS]
Edit the user-scope configuration file.

Options:

-h, --help Show this message and exit.

Corporate Memory Control (cmemc) / Manual

4.6.3 Command: config get

Usage: cmemc [OPTIONS] [CMEM BASE URI|SSL_VERIFY|REQUESTS CA BUNDLE|DP_API_END
POINT|DI_API_ENDPOINT|OAUTH TOKEN URI|OAUTH GRANT TYPE|OAUTH USER
|OAUTH_PASSWORD | OAUTH_CLIENT ID|OAUTH CLIENT SECRET|OAUTH ACCESS
TOKEN]

Get the value of a known cmemc configuration key.
In order to automate processes such as fetching custom API data from
multiple Corporate Memory instances, this command provides a way to get

the value of a cmemc configuration key for the selected deployment.

Example Usage: curl -H "Authorization: Bearer $(cmemc -c my admin token)"

$(cmemc -c my config get DP_API ENDPOINT)/api/custom/slug

The commands returns with exit code 1 if the config key is not used in the

current configuration.

Options:

-h, --help Show this message and exit.

4.6.4 Command: config eval

Usage: cmemc [OPTIONS]
Export all configuration values of a configuration for evaluation.
The output of this command is suitable to be used by a shells eval
command. It will output the complete configuration as 'export key="value"'
statements. This allows for preparation of a shell environment.

eval $(cmemc -c my config eval)

Please be aware that credential details are shown in cleartext with this

command.
Options:
--unset Instead of export all configuration keys, this option will unset

all key.

-h, --help Show this message and exit.

Corporate Memory Control (cmemc) / Manual

4.7 Command group: dataset

Usage: cmemc [OPTIONS] COMMAND [ARGS]...
List, create, delete, inspect, up-/download or open datasets.

This command group allows for managing workspace datasets as well as
dataset file resources. Datasets can be created and deleted. File
resources can be uploaded and downloaded. Details of dataset parameter can

be listed with inspect.

Datasets are identified with a combined key of the project ID and the
project internal dataset ID (e.g: my-project:my-dataset). To get a list of
datasets, use the list command.

Options:

-h, --help Show this message and exit.
Commands:

create Create a dataset.

delete Delete datasets.

download Download the resource file of a dataset.
inspect Display meta data of a dataset.

list List available datasets.

open Open datasets in the browser.

resource List, inspect or delete dataset file resources.

upload Upload a resource file to a dataset.

4.7.1 Command: dataset list

Usage: cmemc [OPTIONS]

List available datasets.

Outputs a list of datasets IDs which can be used as reference for the

dataset create and delete commands.

Options:
--project TEXT The project, from which you want to list the datasets.

Project IDs can be listed with the 'project list' command.

--raw Outputs raw JSON objects of dataset search API response.

--id-only Lists only dataset identifier and no labels or other meta

Corporate Memory Control (cmemc) / Manual

data. This is useful for piping the ids into other cmemc

commands.

-h, --help Show this message and exit.

4.7.2 Command: dataset delete

Usage: cmemc [OPTIONS] [DATASET IDS]...

Delete datasets.

This deletes existing datasets in integration projects from Corporate
Memory. Datasets will be deleted without prompting! Dataset resources will
not be deleted.

Example: cmemc dataset delete my project:my dataset
Datasets can be listed by using the 'cmemc dataset list' command.
Options:
-a, --all Delete all datasets. This is a dangerous option, so use it
with care.
--project TEXT In combination with the '--all' flag, this option allows for
deletion of all datasets of a certain project. The behaviour

is similar to the 'dataset list --project' command.

-h, --help Show this message and exit.

4.7.3 Command: dataset download

Usage: cmemc [OPTIONS] DATASET ID OUTPUT PATH

Download the resource file of a dataset.

This command downloads the file resource of a dataset to your local file
system or to standard out (-). Note that this is not possible for dataset
types such as Knowledge Graph (eccencaDataplatform) or SQL endpoint

(sqlEndpoint) .

Without providing an output path, the output file name will be the same as

the remote file resource.

Corporate Memory Control (cmemc) / Manual

Datasets can be listed by using the 'cmemc dataset list' command.

Options:
--replace Replace existing files. This is a dangerous option, so use it

with care.

-h, --help Show this message and exit.

4.7.4 Command: dataset upload

Usage: cmemc [OPTIONS] DATASET ID INPUT PATH
Upload a resource file to a dataset.
This command uploads a file to a dataset. The content of the uploaded file
replaces the remote file resource. The name of the remote file resource is

not changed.

Warning: If the remote file resource is used in more than one dataset, the

other datasets are also affected by this command.

Warning: The content of the uploaded file is not tested, so uploading a

json file to an xml dataset will result in errors.
Datasets can be listed by using the 'cmemc dataset list' command.
Example: cmemc dataset upload cmem:my-dataset new-file.csv

Options:

-h, --help Show this message and exit.

4.7.5 Command: dataset inspect

Usage: cmemc [OPTIONS] DATASET ID
Display meta data of a dataset.

Options:

--raw Outputs raw JSON.

-h, --help Show this message and exit.

Corporate Memory Control (cmemc) / Manual

4.7.6 Command: dataset create

Usage: cmemc [OPTIONS] [DATASET FILE]
Create a dataset.
Datasets are created in projects and can have associated file resources.
Each dataset has a type (such as 'csv') and a list of parameter which can

change or specify the dataset behaviour.

To get more information on possible dataset types and parameter on these

types, use the '--help-types' and '--help-parameter' options.

Example: cmemc dataset create --project my-project --type csv my-file.csv

Options:
-t, --type TEXT The dataset type of the dataset to create.
Example types are 'csv','json' and
'eccencaDataPlatform' (-> Knowledge Graph).
--project TEXT The project, where you want to create the

dataset in. If there is only one project in

the workspace, this option can be omitted.

-p, --parameter <TEXT TEXT>... A set of key/value pairs. Each dataset type
has different parameters (such as charset,
arraySeparator, ignoreBadLines, ...). In
order to get a list of possible parameter,

use the'--help-parameter' option.

--replace Replace remote file resources in case there

already exists a file with the same name.

--id TEXT The dataset ID of the dataset to create. The
dataset ID will be automatically created in

case it is not present.

--help-types Lists all possible dataset types on given
Corporate Memory instance. Note that this

option already needs access to the instance.

--help-parameter Lists all possible (optional and mandatory)
parameter for a dataset type. Note that this

option already needs access to the instance.

Corporate Memory Control (cmemc) / Manual

-h, --help Show this message and exit.

4.7.7 Command: dataset open

Usage: cmemc [OPTIONS] DATASET IDS...

Open datasets in the browser.

With this command, you can open a dataset in the workspace in your

browser.

The command accepts multiple dataset IDs which results in opening multiple

browser tabs.

Options:

-h, --help Show this message and exit.

4.8 Command group: dataset resource

Usage: cmemc [OPTIONS] COMMAND [ARGS]...
List, inspect or delete dataset file resources.
File resources are identified by its name and project ID.

Options:

-h, --help Show this message and exit.

Commands:
delete Delete file resources.
inspect Display all meta data of a file resource.
list List available file resources.

usage Display all usage data of a file resource.

4.8.1 Command: dataset resource list

Usage: cmemc [OPTIONS]

List available file resources.

Corporate Memory Control (cmemc) / Manual

Outputs a table or a list of dataset resources (files).
Options:

--raw Outputs raw JSON.

--id-only Lists only resource names and no other meta data.
This is useful for piping the IDs into other
commands .

--filter <TEXT TEXT>... Filter file resources based on a meta data. First
parameter CHOICE can be one of ['project',
'regex']. The second parameter is based on CHOICE,
e.g. a project ID or a regular expression string.

-h, --help Show this message and exit.

4.8.2 Command: dataset resource delete

Usage: cmemc [OPTIONS] [RESOURCE IDS]...

Delete file resources.

You have three selection mechanisms: with specific IDs, you will delete

only these resources; by using --filter your will delete resources based

on the filter type and value; by using --all will delete all resources.

Options:

--force Delete resource even if in use by a task.

-a, --all Delete all resources. This is a dangerous option,
so use it with care.

--filter <TEXT TEXT>... Filter file resources based on a meta data. First
parameter CHOICE can be one of ['project',
'regex']. The second parameter is based on CHOICE,
e.g. a project ID or a regular expression string.

-h, --help Show this message and exit.

4.8.3 Command: dataset resource inspect

Usage: cmemc [OPTIONS] RESOURCE ID

Display all meta data of a file resource.

Corporate Memory Control (cmemc) / Manual

Options:
--raw Outputs raw JSON.

-h, --help Show this message and exit.

4.8.4 Command: dataset resource usage
Usage: cmemc [OPTIONS] RESOURCE ID

Display all usage data of a file resource.
Options:

--raw Outputs raw JSON.

-h, --help Show this message and exit.

4.9 Command group: graph

Usage: cmemc [OPTIONS] COMMAND [ARGS]...
List, import, export, delete, count, tree or open graphs.

Graphs are identified by an IRI. The get a list of existing graphs,

execute the list command or use tab-completion.

Options:

-h, --help Show this message and exit.

Commands:
count Count triples in graph(s).
delete Delete graph(s) from the store.
export Export graph(s) as NTriples to stdout (-), file or directory.
import Import graph(s) to the store.

list List accessible graphs.
open Open / explore a graph in the browser.
tree Show graph tree(s) of the owl:imports hierarchy.

4.9.1 Command: graph count

Usage: cmemc [OPTIONS] [IRIS]...

Count triples in graph(s).

Corporate Memory Control (cmemc) / Manual

This command lists graphs with their triple count. Counts are done without

following imported graphs.

Options:
-a, --all Count all graphs
-s, --summarize Display only a sum of all counted graphs together
-h, --help Show this message and exit.

4.9.2 Command: graph tree

Usage: cmemc [OPTIONS] [IRIS]...
Show graph tree(s) of the owl:imports hierarchy.
You can can output one or more trees of the import hierarchy.

Imported graphs which do not exists are shown as [missing: IRI]. Imported
graphs which will result in an import cycle are shown as [ignored: IRI].

Each graph is shown with label and IRI.

Options:
-a, --all Show tree of all (readable) graphs.
--raw Outputs raw JSON of the graph importTree API response.
--id-only Lists only graph identifier (IRIs) and no labels or other meta
data. This is useful for piping the IRIs into other commands.
The output with this option is a sorted, flat, de-duplicated

list of existing graphs.

-h, --help Show this message and exit.

4.9.3 Command: graph list

Usage: cmemc [OPTIONS]

List accessible graphs.

Options:
--raw Outputs raw JSON of the graphs list API response.
--id-only Lists only graph identifier (IRIs) and no labels

or other meta data. This is useful for piping the

IRIs into other commands.

Corporate Memory Control (cmemc) / Manual

--filter <CHOICE TEXT>... Filter graphs based on effective access
conditions or import closure. First parameter
CHOICE can be 'access' or 'imported-by'. The
second parameter can be 'readonly' or 'writeable'
in case of 'access' or any readable graph in case

of 'imported-by'.

-h, --help Show this message and exit.

4.9.4 Command: graph export
Usage: cmemc [OPTIONS] [IRIS]...
Export graph(s) as NTriples to stdout (-), file or directory.
In case of file export, data from all selected graphs will be concatenated

in one file. In case of directory export, .graph and .ttl files will be

created for each graph.

Options:

-a, --all Export all readable graphs.

--include-imports Export selected graph(s) and all graphs
which are imported from these selected
graph(s).

--create-catalog In addition to the .ttl and .graph files,
cmemc will create an XML catalog file
(catalog-v001l.xml) which can be used by
applications such as Protégé.

--output-dir DIRECTORY Export to this directory.

--output-file FILE Export to this file. [default: -]

-t, --filename-template TEXT Template for the export file name(s). Used
together with --output-dir. Possible
placeholders are (Jinja2): {{hash}} - sha256
hash of the graph IRI, {{iriname}} - graph
IRI converted to filename, {{connection}} -
from the --connection option and {{date}} -
the current date as YYYY-MM-DD. The file
suffix will be appended. Needed directories
will be created. [default: {{hash}}]

Corporate Memory Control (cmemc) / Manual

--mime-type [application/n-triples|text/turtle]
Define the requested mime type [default:

application/n-triples]

-h, --help Show this message and exit.

4.9.5 Command: graph delete
Usage: cmemc [OPTIONS] [IRIS]...
Delete graph(s) from the store.
Options:
-a, --all Delete all writeable graphs.
--include-imports Delete selected graph(s) and all writeable graphs which

are imported from these selected graph(s).

-h, --help Show this message and exit.

4.9.6 Command: graph import

Usage: cmemc [OPTIONS] INPUT PATH [IRI]
Import graph(s) to the store.

If input is an directory, it scans for file-pairs such as xxx.ttl and
xxx.ttl.graph where xxx.ttl is the actual triples file and xxx.ttl.graph
contains the graph IRI as one string: "https://mygraph.de/xxx/". If input
is a file, content will be uploaded to IRI. If --replace is set, the data

will be overwritten, if not, it will be added.

Options:
--replace Replace / overwrite the graph - instead of just adding new

triples the graph.

--skip-existing Skip importing a file if the target graph already exists in
the store. Note that the graph list is fetched once at the
beginning of the process, so that you can still add

multiple files to one single graph (if it does not exist).

-h, --help Show this message and exit.

Corporate Memory Control (cmemc) / Manual

4.9.7 Command: graph open

Usage: cmemc [OPTIONS] IRI
Open / explore a graph in the browser.

Options:

-h, --help Show this message and exit.

4.10 Command group: project

Usage: cmemc [OPTIONS] COMMAND [ARGS]...
List, import, export, create, delete or open projects.

Projects are identified by an PROJECTID. The get a list of existing

projects, execute the list command or use tab-completion.

Options:

-h, --help Show this message and exit.

Commands:
create Create empty new project(s).
delete Delete project(s).
export Export project(s) to file(s).
import Import a project from a file or directory.
list List available projects.

open Open projects in the browser.

4.10.1 Command: project open

Usage: cmemc [OPTIONS] PROJECT IDS...
Open projects in the browser.

With this command, you can open a project in the workspace in your browser

to change them.

The command accepts multiple projects IDs which results in opening

multiple browser tabs.

Options:

Corporate Memory Control (cmemc) / Manual

-h, --help Show this message and exit.

4.10.2 Command: project list
Usage: cmemc [OPTIONS]
List available projects.

Outputs a list of project IDs which can be used as reference for the

project create, delete, export and import commands.

Options:
--raw Outputs raw JSON.
--id-only Lists only project identifier and no labels or other meta data.

This is useful for piping the IDs into other commands.

-h, --help Show this message and exit.

4.10.3 Command: project export

Usage: cmemc [OPTIONS] [PROJECT IDS]...
Export project(s) to file(s).

Projects can be exported with different export formats. The default type
is a zip archive which includes meta data as well as dataset resources. If
more than one project is exported, a file is created for each project. By
default, these files are created in the current directory and with a

descriptive name (see --template option default).
Example: cmemc project export my project

Available projects can be listed by using the 'cmemc project list'

command.

You can use the template string to create subdirectories as well: cmemc
config list | parallel -I% cmemc -c % project export --all -t
"dump/{{connection}}/{{date}}-{{id}}.project"

Options:

-a, --all Export all projects.

-0, --overwrite Overwrite existing files. This is a dangerous

Corporate Memory Control (cmemc) / Manual

option, so use it with care.

--output-dir DIRECTORY The base directory, where the project files
will be created. If this directory does not
exist, it will be silently created. [default:
.1

--type TEXT Type of the exported project file(s). Use the
--help-types option or tab completion to see a

list of possible types. [default: xmlZip]

-t, --filename-template TEXT Template for the export file name(s). Possible
placeholders are (Jinja2): {{id}} (the project
ID), {{connection}} (from the --connection
option) and {{date}} (the current date as
YYYY-MM-DD). The file suffix will be appended.
Needed directories will be created. [default:

{{date}}-{{connection}}-{{id}}.project]

--extract Export projects to a directory structure
instead of a ZIP archive. Note that the
--filename-template option is ignored here.
Instead, a sub-directory per exported project
is created under the output directory. Also

note that not all export types are

extractable.
--help-types Lists all possible export types.
-h, --help Show this message and exit.

4.10.4 Command: project import

Usage: cmemc [OPTIONS] PATH PROJECT ID
Import a project from a file or directory.
Example: cmemc project import my project.zip my project
Options:
-0, --overwrite Overwrite an existing project. This is a dangerous option,

so use it with care.

-h, --help Show this message and exit.

Corporate Memory Control (cmemc) / Manual

4.10.5 Command: project delete

Usage: cmemc [OPTIONS] [PROJECT IDS]...
Delete project(s).

This deletes existing data integration projects from Corporate Memory.

Projects will be deleted without prompting!
Example: cmemc project delete my project

Projects can be listed by using the 'cmemc project list' command.

Options:
-a, --all Delete all projects. This is a dangerous option, so use it with
care.
-h, --help Show this message and exit.

4.10.6 Command: project create

Usage: cmemc [OPTIONS] PROJECT IDS...
Create empty new project(s).

This creates one or more new projects. Existing projects will not be

overwritten.
Example: cmemc project create my project

Projects can be listed by using the 'cmemc project list' command.

Options:

-h, --help Show this message and exit.

4.11 Command group: query

Usage: cmemc [OPTIONS] COMMAND [ARGS]...

List, execute, get status or open SPARQL queries.

Queries are identified either by a file path, a URI from the query catalog

Corporate Memory Control (cmemc) / Manual

or a shortened URI (qgname, using a default namespace).

In order to get a list of queries from the query catalog, use the list
command. One or more queries can be executed one after the other with the
execute command. With open command you can jump to the query editor in

your browser.

Queries can use a mustache like syntax to specify placeholder for
parameter values (e.g. {{resourceUri}}). These parameter values need to be

given as well, before the query can be executed (use the -p option).

Options:

-h, --help Show this message and exit.

Commands:
execute Execute queries which are loaded from files or the query catalog.
list List available queries from the catalog.
open Open queries in the editor of the query catalog in your browser.
replay Re-execute queries from a replay file.

status Get status information of executed and running queries.

4.11.1 Command: query execute
Usage: cmemc [OPTIONS] QUERIES...
Execute queries which are loaded from files or the query catalog.

Queries are identified either by a file path, a URI from the query

catalog, or a shortened URI (gname, using a default namespace).

If multiple queries are executed one after the other, the first failing

query stops the whole execution chain.

Limitations: All optional parameters (e.g. accept, base64, ...) are
provided for ALL queries in an execution chain. If you need different

parameters for each query in a chain, run cmemc multiple times and use the

logical operators && and || of your shell instead.
Options:
--accept TEXT Accept header for the HTTP request(s).

Setting this to 'default' means that cmemc

uses an appropriate accept header for

terminal output (text/csv for tables,

Corporate Memory Control (cmemc) / Manual

--no-imports

--base64

-p, --parameter <TEXT TEXT>...

--limit INTEGER

--offset INTEGER

--distinct

--timeout INTEGER

-h, --help

4.11.2 Command: query list

text/turtle for graphs, * otherwise). Please
refer to the Corporate Memory system manual
for a list of accepted mime types.

[default: default]

Graphs which include other graphs (using
owl:imports) will be queried as merged
overall-graph. This flag disables this
default behaviour. The flag has no effect on

update queries.

Enables base64 encoding of the query
parameter for the SPARQL requests (the
response is not touched). This can be useful
in case there is an aggressive firewall

between cmemc and Corporate Memory.

In case of a parameterized query
(placeholders with the '{{key}}' syntax),
this option fills all placeholder with a
given value before the query is
executed.Pairs of placeholder/value need to
be given as a tuple 'KEY VALUE'. A key can

be used only once.

Override or set the LIMIT in the executed
SELECT query. Note that this option will
never give you more results than the LIMIT

given in the query itself.

Override or set the OFFSET in the executed
SELECT query.

Override the SELECT query by make the result
set DISTINCT.

Set max execution time for query evaluation

(in milliseconds).

Show this message and exit.

Corporate Memory Control (cmemc) / Manual

Usage: cmemc [OPTIONS]

List available queries from the catalog.

Outputs a list of query URIs which can be used as reference for the query

execute command.

Options:
--id-only Lists only query identifier and no labels or other meta data.

This is useful for piping the ids into other cmemc commands.

-h, --help Show this message and exit.

4.11.3 Command: query open

Usage: cmemc [OPTIONS] QUERIES...
Open queries in the editor of the query catalog in your browser.

With this command, you can open (remote) queries from the query catalog in
the query editor in your browser (e.g. in order to change them). You can
also load local query files into the query editor, in order to import them

into the query catalog.

The command accepts multiple query URIs or files which results in opening

multiple browser tabs.

Options:

-h, --help Show this message and exit.

4.11.4 Command: query status

Usage: cmemc [OPTIONS] [QUERY UUID]
Get status information of executed and running queries.
With this command, you can access the latest executed SPARQL queries on
the DataPlatform. These queries are identified by UUIDs and listed ordered

by starting timestamp.

You can filter queries based on status and runtime in order to investigate

slow queries. In addition to that, you can get the details of a specific

Corporate Memory Control (cmemc) / Manual

query by using the ID as a parameter.
Options:

--id-only Lists only query identifier and no labels or
other meta data. This is useful for piping the
ids into other cmemc commands.

--raw Outputs raw JSON response of the query status
API.

--filter <CHOICE TEXT>... Filter queries based on execution status and
time. First parameter CHOICE can be 'slower-
than', 'status' or 'type. The second parameter
has to be a finished or running, in case of the
'status' filter, a time in milliseconds in case
of the 'slower-than' filter or a query type in
case of the 'type' filter.

-h, --help Show this message and exit.

4.11.5 Command: query replay

Usage: cmemc [OPTIONS] REPLAY FILE
Re-execute queries from a replay file.

This command reads a REPLAY FILE and re-executes the logged queries. A
REPLAY FILE is a JSON document which is an array of JSON objects with at
least a key "queryString® holding the query text OR a key 'iri' holding
the IRI of the query in the query catalog. It can be created with the

‘query status® command, e.g. “query status --raw > replay.json’
The output of this command shows basic query execution statistics.

The queries are executed one after another in the order given in the input
REPLAY FILE. Query placeholders / parameters are ignored. If a query

results in an error, the duration is not counted.

The optional output file is the same JSON document which is used as input,
but each query object is annotated with an additional 'replays' object,
which is an array of JSON objects which hold values for the
replay|loop|run IDs, start and end time as well as duration and other
data.

Corporate Memory Control (cmemc) / Manual

Options:
--raw Output the execution statistic as raw JSON.
--loops INTEGER Number of loops to run the replay file. [default: 1]
--wait INTEGER Number of seconds to wait between query executions.

[default: 0]

--output-file FILE Save the optional output to this file. Input and output
of the command can be the same file. The output is
written at the end of a successful command execution.
The output can be stdout ('-') - in this case, the

execution statistic output is oppressed.

--run-label TEXT Optional label of this replay run.

-h, --help Show this message and exit.

4.12 Command group: vocabulary

Usage: cmemc [OPTIONS] COMMAND [ARGS]...

List, (un-)install, import or open vocabs / manage cache.

Options:
-h, --help Show this message and exit.
Commands:
cache List und update the vocabulary cache.
import Import a turtle file as a vocabulary.
install Install one or more vocabularies from the catalog.
list Output a list of vocabularies.
open Open / explore a vocabulary graph in the browser.

uninstall Uninstall one or more vocabularies.

4.12.1 Command: vocabulary open

Usage: cmemc [OPTIONS] IRI
Open / explore a vocabulary graph in the browser.

Vocabularies are identified by their graph IRI. Installed vocabularies can

be listed with the "vocabulary list" command.

Corporate Memory Control (cmemc) / Manual

Options:

-h, --help Show this message and exit.

4.12.2 Command: vocabulary list

Usage: cmemc [OPTIONS]
Output a list of vocabularies.

Vocabularies are graphs (see 'cmemc graph' command group) which consists

of class and property descriptions.

Options:
--id-only Lists only vocabulary identifier (IRIs) and
no labels or other meta data. This is useful
for piping the ids into other cmemc

commands .
--filter [all|installed|installable]
Filter list based on status. [default:

installed]

--raw Outputs raw JSON.

-h, --help Show this message and exit.

4.12.3 Command: vocabulary install

Usage: cmemc [OPTIONS] [IRIS]...
Install one or more vocabularies from the catalog.

Vocabularies are identified by their graph IRI. Installable vocabularies

can be listed with the "vocabulary list --filter installable" command.

Options:
-a, --all Install all vocabularies from the catalog.
-h, --help Show this message and exit.

4.12.4 Command: vocabulary uninstall

Corporate Memory Control (cmemc) / Manual

Usage: cmemc [OPTIONS] [IRIS]...

Uninstall one or more vocabularies.

Vocabularies are identified by their graph IRI. Already installed

vocabularies can be listed with the "vocabulary list --filter installed"

command.

Options:
-a, --all Uninstall all installed vocabularies.
-h, --help Show this message and exit.

4.12.5 Command: vocabulary import

Usage: cmemc [OPTIONS] FILE
Import a turtle file as a vocabulary.

With this command, you can import a local ontology file as a named graph.

and create a corresponding vocabulary catalog entry.

The uploaded ontology file is analysed locally in order to discover the
named graph and the prefix declaration. This requires an OWL ontology
description which correctly uses the vann:preferredNamespacePrefix and

vann:preferredNamespaceUri properties.

Options:
--replace Replace (overwrite) existing vocabulary, if present.

-h, --help Show this message and exit.

4.13 Command group: vocabulary cache
Usage: cmemc [OPTIONS] COMMAND [ARGS]...
List und update the vocabulary cache.

Options:

-h, --help Show this message and exit.

Commands:

list Output the content of the global vocabulary cache.

Corporate Memory Control (cmemc) / Manual

update Reload / updates the data integration cache for a vocabulary.

4.13.1 Command: vocabulary cache update

Usage: cmemc [OPTIONS] [IRIS]...

Reload / updates the data integration cache for a vocabulary.

Options:
-a, --all Update cache for all installed vocabularies.
-h, --help Show this message and exit.

4.13.2 Command: vocabulary cache list
Usage: cmemc [OPTIONS]
Output the content of the global vocabulary cache.
Options:
--id-only Lists only vocabulary term identifier (IRIs) and no labels or
other meta data. This is useful for piping the ids into other

cmemc commands .

--raw Outputs raw JSON.

-h, --help Show this message and exit.

4.14 Command group: workflow

Usage: cmemc [OPTIONS] COMMAND [ARGS]...
List, execute, status or open (io) workflows.

Workflows are identified by a WORKFLOW ID. The get a list of existing
workflows, execute the list command or use tab-completion. The WORKFLOW_ID
is a concatenation of an PROJECT ID and a TASK ID, such as "my-project:my-

workflow".

Options:

-h, --help Show this message and exit.

Commands:

Corporate Memory Control (cmemc) / Manual

execute Execute workflow(s).

io Execute a workflow with file input/output.
list List available workflow ids.

open Open a workflow in your browser.

scheduler List, inspect, enable/disable or open scheduler.

status Get status information of workflow(s).

4.14.1 Command: workflow execute

Usage: cmemc [OPTIONS] [WORKFLOW IDS]...

Execute workflow(s).

With this command, you can start one or more workflows at the same time or

in a sequence, depending on the result of the predecessor.

Executing a workflow can be done in two ways: Without --wait just sends
the starting signal and does not look for the workflow and its result
(fire and forget). Starting workflows in this way, starts all given

workflows at the same time.

The optional --wait option starts the workflows in the same way, but also
polls the status of a workflow until it is finished. In case of an error

of a workflow, the next workflow is not started.

Options:
-a, --all Execute all available workflows.
--wait Wait until all executed workflows are

completed.

--polling-interval INTEGER RANGE
How many seconds to wait between status
polls. Status polls are cheap, so a higher
polling interval is most likely not needed.
[default: 1]

-h, --help Show this message and exit.

4.14.2 Command: workflow io

Usage: cmemc [OPTIONS] WORKFLOW_ID

Corporate Memory Control (cmemc) / Manual

Execute a workflow with file input/output.

With this command, you can execute a workflow that uses variable datasets
as input, output or for configuration. Use the input parameter to feed
data into the workflow. Likewise use output for retrieval of the workflow

result. Workflows without a variable dataset will throw an error.

Options:

-i, --input FILE From which file the input is taken: note
that the maximum file size to upload is
limited to a server configured value. If the
workflow has no defined variable input
dataset, this can be ignored.

-0, --output FILE To which file the result is written to: use

in order to output the result to stdout.
If the workflow has no defined variable
output dataset, this can be ignored. Please
note that the io command will not warn you

on overwriting existing output files.

--input-mimetype [guess|application/xml|application/json]|text/csv]
Which input format should be processed: If
not given, cmemc will try to guess the mime
type based on the file extension or will
fail

--output-mimetype
[guess|application/xml|application/json|application/n-triples|application/vnd.openxmlformats-officedc
Which output format should be requested: If
not given, cmemc will try to guess the mime
type based on the file extension or will
fail. In case of an output to stdout, a
default mime type will be used (currently

xml) .

-h, --help Show this message and exit.

4.14.3 Command: workflow list

Usage: cmemc [OPTIONS]

List available workflow ids.

Corporate Memory Control (cmemc) / Manual

Options:

--raw

--id-only

-h, --help

--filter <CHOICE TEXT>...

Outputs raw JSON objects of workflow task search

API response.

Lists only workflow identifier and no labels or
other meta data. This is useful for piping the

IDs into other commands.

Filter workflows based on project or suitability
for the io command .First parameter CHOICE can be
'project' or 'io'. The second parameter has to be
a project ID in case of 'project' or 'input-
only|output-only|input-output|any' in case of

'io' filter.

Show this message and exit.

4.14.4 Command: workflow status

Options:
--project TEXT

--raw

-h, --help

Usage: cmemc [OPTIONS] [WORKFLOW IDS]...

Get status information of workflow(s).

The project, from which you want to list the
workflows. Project IDs can be listed with

the 'project list' command.

OQutput raw JSON info.

--filter [Idle|Not executed|Finished|Cancelled|Failed|Successful|Canceling|Running|Waiting]

Show only workflows of a specific status.

Show this message and exit.

4.14.5 Command: workflow open

Options:

Usage: cmemc [OPTIONS] WORKFLOW ID

Open a workflow in your browser.

-h, --help Show this message and exit.

Corporate Memory Control (cmemc) / Manual

4.15 Command group: workflow scheduler

Usage: cmemc [OPTIONS] COMMAND [ARGS]...
List, inspect, enable/disable or open scheduler.

Schedulers execute workflows in specified intervals. They are identified
with a SCHEDULERID. To get a list of existing schedulers, execute the list

command or use tab-completion.

Options:

-h, --help Show this message and exit.

Commands:
disable Disable scheduler(s).
enable Enable scheduler(s).
inspect Display all meta data of a scheduler.
list List available scheduler.

open Open scheduler(s) in the browser.

4.15.1 Command: workflow scheduler open

Usage: cmemc [OPTIONS] SCHEDULER 1IDS...
Open scheduler(s) in the browser.

With this command, you can open a scheduler in the workspace in your

browser to change it.

The command accepts multiple scheduler IDs which results in opening

multiple browser tabs.
Options:
--workflow Instead of opening the scheduler page, open the page of the

scheduled workflow.

-h, --help Show this message and exit.

4.15.2 Command: workflow scheduler list

Usage: cmemc [OPTIONS]

Corporate Memory Control (cmemc) / Manual

List available scheduler.

Outputs a table or a list of scheduler IDs which can be used as reference

for the scheduler commands.

Options:
--raw Outputs raw JSON.
--id-only Lists only task identifier and no labels or other meta data.

This is useful for piping the IDs into other commands.

-h, --help Show this message and exit.

4.15.3 Command: workflow scheduler inspect

Usage: cmemc [OPTIONS] SCHEDULER ID
Display all meta data of a scheduler.

Options:

--raw Outputs raw JSON.

-h, --help Show this message and exit.

4.15.4 Command: workflow scheduler disable

Usage: cmemc [OPTIONS] [SCHEDULER IDS]...

Disable scheduler(s).

The command accepts multiple scheduler IDs which results in disabling them

one after the other.

Options:
-a, --all Disable all scheduler.

-h, --help Show this message and exit.

4.15.5 Command: workflow scheduler enable

Usage: cmemc [OPTIONS] [SCHEDULER IDS]...

Enable scheduler(s).

Corporate Memory Control (cmemc) / Manual

The command accepts multiple scheduler IDs which results in enabling them

one after the other.

Options:
-a, --all Enable all scheduler.

-h, --help Show this message and exit.

	Introduction
	About eccenca Corporate Memory Control (cmemc)
	Scope of delivery

	Installation
	Installation via pip
	Installation via release package
	Linux / MacOS installation
	Windows installation

	Configuration
	Reference
	Command group: admin
	Command: admin showcase
	Command: admin bootstrap
	Command: admin status
	Command: admin token

	Command group: admin metrics
	Command: admin metrics get
	Command: admin metrics inspect
	Command: admin metrics list

	Command group: admin workspace
	Command: admin workspace export
	Command: admin workspace import
	Command: admin workspace reload

	Command group: admin workspace python
	Command: admin workspace python install
	Command: admin workspace python uninstall
	Command: admin workspace python list
	Command: admin workspace python list-plugins

	Command group: admin store
	Command: admin store showcase
	Command: admin store bootstrap
	Command: admin store export
	Command: admin store import

	Command group: config
	Command: config list
	Command: config edit
	Command: config get
	Command: config eval

	Command group: dataset
	Command: dataset list
	Command: dataset delete
	Command: dataset download
	Command: dataset upload
	Command: dataset inspect
	Command: dataset create
	Command: dataset open

	Command group: dataset resource
	Command: dataset resource list
	Command: dataset resource delete
	Command: dataset resource inspect
	Command: dataset resource usage

	Command group: graph
	Command: graph count
	Command: graph tree
	Command: graph list
	Command: graph export
	Command: graph delete
	Command: graph import
	Command: graph open

	Command group: project
	Command: project open
	Command: project list
	Command: project export
	Command: project import
	Command: project delete
	Command: project create

	Command group: query
	Command: query execute
	Command: query list
	Command: query open
	Command: query status
	Command: query replay

	Command group: vocabulary
	Command: vocabulary open
	Command: vocabulary list
	Command: vocabulary install
	Command: vocabulary uninstall
	Command: vocabulary import

	Command group: vocabulary cache
	Command: vocabulary cache update
	Command: vocabulary cache list

	Command group: workflow
	Command: workflow execute
	Command: workflow io
	Command: workflow list
	Command: workflow status
	Command: workflow open

	Command group: workflow scheduler
	Command: workflow scheduler open
	Command: workflow scheduler list
	Command: workflow scheduler inspect
	Command: workflow scheduler disable
	Command: workflow scheduler enable

